One of the primary symptoms of R-CPD (inability to burp) is bloating. Bloating is often accompanied by actual abdominal distention due to excess air in both stomach and intestines. Since the person is unable to burp, air must now pass through the entire GI tract and be dispelled as flatulence.

Photos:

Visual Portfolio, Posts & Image Gallery for WordPress

Gastric Air Bubble (1 of 3)

This abdominal xray of an individual with R-CPD shows a remarkably large gastric air bubble (dotted line), and also excessive air in transverse (T) and descending (D) colon. All of this extra air can cause abdominal distention that increases as the day progresses.

Bloated Abdomen (2 of 3)

Flatulence in the evening and even into the night returns the abdomen to normal, but the cycle repeats the next day. To ask patients their degree of abdominal distention, we use pregnancy as an analogy in both men and women. Not everyone describes this problem. Most, however, say that late in the day they appear to be “at least 3 months pregnant.” Some say “6 months” or even “full term.” In a different patient with untreated R-CPD, here is what her abdomen looked like late in every day. Her abdomen bulges due to all of the air in her GI tract, just as shown in Photo 1.

Non-bloated Abdomen (3 of 3)

The same patient, a few weeks after Botox injection. She is now able to burp. Bloating and flatulence are remarkably diminished, and her abdomen no longer balloons towards the end of every day.

Can’t Burp: Progression of Bloating and Abdominal Distention – a Daily Cycle for Many with R-CPD

This young woman has classic R-CPD symptoms—the can’t burp syndrome. Early in the day, her symptoms are least, and abdomen at “baseline” because she has “deflated” via flatulence through the night.  In this series you see the difference in her abdominal distention between early and late in the day.  The xray images show the remarkable amount of air retained that explains her bloating and distention.  Her progression is quite typical; some with R-CPD distend even more than shown here especially after eating a large meal or consuming anything carbonated.

Visual Portfolio, Posts & Image Gallery for WordPress

Side view of a bloated abdomen (1 of 6)

Early in the day, side view of the abdomen shows mild distention. The patient’s discomfort is minimal at this time of day as compared with later.

Mild distension (2 of 6)

Also early in the day, a front view, showing again mild distention.

Front view (3 of 6)

Late in the same day, another side view to compare with photo 1. Accumulation of air in stomach and intestines is distending the abdominal wall.

Another view (4 of 6)

Also late in the day, the front view to compare with photo 2, showing considerably more distention. The patient is quite uncomfortable, bloated, and feels ready to “pop.” Flatulence becomes more intense this time of day, and will continue through the night.

X-ray of trapped air (5 of 6)

Antero-posterior xray of the chest shows a very large stomach air bubble (at *) and the descending colon is filled with air (arrow).

Side view (6 of 6)

A lateral view chest xray shows again the large amount of excess air in the stomach and intestines that the patient must rid herself of via flatulence, typically including through the night, in order to begin the cycle again the next day.

Shortness of Breath Caused by No-Burp (R-CPD)

Persons who can’t burp and have the full-blown R-CPD syndrome often say that when the bloating and distention are particularly bad—and especially when they have a sense of chest pressure, they also have a feeling of shortness of breath. They’ll say, for example, “I’m a [singer, or runner, or cyclist or _____], but my ability is so diminished by R-CPD.  If I’m competing or performing I can’t eat or drink for 6 hours beforehand.”  Some even say that they can’t complete a yawn when symptoms are particularly bad.  The xrays below explain how inability to burp can cause shortness of breath. 

Visual Portfolio, Posts & Image Gallery for WordPress

X-ray of trapped air (1 of 2)

In this antero-posterior xray, one can see that there is so much air in the abdomen, that the diaphragm especially on the left (right of xray) is lifted up, effectively diminishing the volume of the chest cavity and with it, the size of a breath a person can take.

Side view (2 of 2)

The lateral view again shows the line of the thin diaphragmatic muscle above the enormous amount of air in the stomach. The diaphragm inserts on itself so that when it contracts it flattens. That action sucks air into the lungs and simultaneously pushes abdominal contents downward. But how can the diaphragm press down all the extra air? It can’t fully, and the inspiratory volume is thereby diminished. The person says “I can’t get a deep breath.”