Inability to Burp or Belch

Inability to burp or belch occurs when the upper esophageal sphincter (cricopharyngeus muscle) cannot relax in order to release the “bubble” of air. The sphincter is a muscular valve that encircles the upper end of the esophagus just below the lower end of the throat passage. If looking from the front at a person’s neck, it is just below the “Adam’s / Eve’s apple,” directly behind the cricoid cartilage.

If you care to see this on a model, look at the photos below. That sphincter muscle relaxes for about a second every time we swallow saliva, food, or drink. All of the rest of the time it is contracted. Whenever a person belches, the same sphincter needs to let go for a split second in order for the excess air to escape upwards. In other words, just as it is necessary that the sphincter “let go” to admit food and drink downwards in the normal act swallowing, it is also necessary that the sphincter be able to “let go” to release air upwards for belching. The formal name for this disorder is retrograde cricopharyngeus dysfunction (R-CPD).

People who cannot release air upwards are miserable. They can feel the “bubble” sitting at the mid to low neck with nowhere to go. Or they experience gurgling when air comes up the esophagus only to find that the way of escape is blocked by a non-relaxing sphincter. It is as though the muscle of the esophagus continually churns and squeezes without success.

The person so wants and needs to burp, but continues to experience this inability to burp. Sometimes this can even be painful. Such people often experience chest pressure or abdominal bloating, and even abdominal distention. Flatulence is also severe in most persons with R-CPD. Other less universal symptoms are nausea after eating, painful hiccups, hypersalivation, or a feeling of difficulty breathing with exertion when “full of air.” Many persons with R-CPD have undergone extensive testing and treatment trials without benefit. R-CPD reduces quality of life, and is often socially disruptive and anxiety-provoking. Common (incorrect) diagnoses are “acid reflux” and “irritable bowel syndrome,” and therefore treatments for these conditions do not relieve symptoms significantly.

Approaches for treating the inability to burp:

For people who match the syndrome of:
1) Inability to belch
2) Gurgling noises
3) Chest/abdominal pressure and bloating
4) Flatulence

Here is the most efficient way forward: First, a consultation to determine whether or not the criteria for diagnosing R-CPD are met. Next, a simple office-based videoendoscopic swallow study which incorporates a neurological examination of tongue, pharynx (throat) and larynx muscles and often includes a mini-esophagoscopy. This establishes that the sphincter works normally in a forward (antegrade) swallowing direction, but not in a reverse (retrograde) burping or regurgitating fashion. Along with the symptoms described above, this straightforward office consultation and swallowing evaluation establishes the diagnosis of retrograde cricopharyngeus dysfunction (non-relaxation).

The second step is to place Botox into the malfunctioning sphincter muscle. The desired effect of Botox in muscle is to weaken it for at least several months. The person thus has many weeks to verify that the problem is solved or at least minimized.

The Botox injection could potentially be done in an office setting, but we recommend the first time (at least) placing it during a very brief general anesthetic in an outpatient operating room. That’s because the first time, it is important to answer the question definitively, that is, that the sphincter’s inability to relax when presented with a bubble of air from below, is the problem. Furthermore, based upon an experience with more than 190 patients as of August 2019, a single injection appears to “train” the patient how to burp. Approximately 80% of patients have maintained the ability to burp long after the effect of the Botox has dissipated. That is, long past 6 months from the time of injection.

Patients treated for R-CPD as just described should experience dramatic relief of their symptoms. And to repeat, our experience in treating more than 190 patients (and counting) suggests that this single Botox injection allows the system to “reset” and the person may never lose his or her ability to burp. Of course, if the problem returns, the individual could elect to pursue additional Botox treatments, or might even elect to undergo endoscopic laser cricopharyngeus myotomy. To learn more about this condition, see Dr. Bastian’s description of his experience with the first 51 of his much larger caseload.

Check out our list of resources containing peer-reviewed articles, patient stories and more!


Photos of the cricopharyngeus muscle:

Visual Portfolio, Posts & Image Gallery for WordPress
Location of the cricopharyngeus muscle

Cricopharyngeus Muscle (1 of 3)

The highlighted oval represents the location of the cricopharyngeus muscle.
Retrograde Cricopharyngeus Dysfunction (R-CPD)

Cricopharyngeus Muscle (2 of 3)

The cricopharyngeus muscles in the open position.
Contracted Cricopharyngeus Muscle

Contracted Cricopharyngeus Muscle (3 of 3)

The cricopharyngeus muscle in the contracted position.

Esophageal Findings: Series of 3 photos

Visual Portfolio, Posts & Image Gallery for WordPress

Reperti esofagei (1 di 3)

A view of the mid-esophagus in a young person (early 30’s). The esophagus is kept open by the patient’s un-burped air. Note the “aortic shelf” at A, delineated by dotted lines.

Esophageal Findings (2 of 3)

A moment later, additional air is pushed upwards from the stomach to dilate the mid-esophagus even more. A bony “spur” in the spine is thrown into high relief by the stretched esophagus.

Esophageal Findings (3 of 3)

A view of the upper esophagus (from just below the cricopharyngeus muscle sphincter) shows what appears to be remarkable lateral dilation (arrows) caused over time by the patient’s unburpable air. Dilation can only occur laterally due to confinement of the esophagus by trachea (anteriorly) and spine (posteriorly), as marked.

Abdominal Distention of R-CPD: Series of 3 photos

Visual Portfolio, Posts & Image Gallery for WordPress

Gastric Air Bubble (1 of 3)

This abdominal xray of an individual with R-CPD shows a remarkably large gastric air bubble (dotted line), and also excessive air in transverse (T) and descending (D) colon. All of this extra air can cause abdominal distention that increases as the day progresses.

Bloated Abdomen (2 of 3)

Flatulence in the evening and even into the night returns the abdomen to normal, but the cycle repeats the next day. To ask patients their degree of abdominal distention, we use pregnancy as an analogy in both men and women. Not everyone describes this problem. Most, however, say that late in the day they appear to be “at least 3 months pregnant.” Some say “6 months” or even “full term.” In a different patient with untreated R-CPD, here is what her abdomen looked like late in every day. Her abdomen bulges due to all of the air in her GI tract, just as shown in Photo 1.

Non-bloated Abdomen (3 of 3)

The same patient, a few weeks after Botox injection. She is now able to burp. Bloating and flatulence are remarkably diminished, and her abdomen no longer balloons towards the end of every day.

More Interesting Esophageal Findings of R-CPD (Inability to Burp)

Visual Portfolio, Posts & Image Gallery for WordPress
Stretched Esophagus

Stretched Esophagus (1 of 4)

Using a 3.7mm ENT scope with no insufflated air, note the marked dilation of the esophagus by swallowed air the patient is unable to belch. T = trachea; A = aortic shelf; S = spine
posterior wall of the trachea

Tracheal Wall (2 of 4)

The posterior wall of the trachea (T) is better seen here from a little higher in the esophagus. A = aorta
stretched esophagus

Over-dilation (3 of 4)

The photo is rotated clockwise at a moment when air from below is pushed upward so as to transiently over-dilate the esophagus. Note that the esophagus is almost stretching around the left side of the trachea in the direction of the arrow.
left mainstem bronchus is made visible

Bronchus (4 of 4)

Now deeper in the esophagus (with it inflated throughout the entire examination by the patient’s own air), it even appears that the left mainstem bronchus (B) is made visible by esophageal dilation stretching around it.

Dramatic Lateral Dilation of the Upper Esophagus: Series of 3 photos

Visual Portfolio, Posts & Image Gallery for WordPress
lateral dilation of the throat at C6 of the spine

(1 of 3)

This photo is at the level of (estimated) C6 of the spine (at S). This person has known cervical arthritis, accounting for the prominence. Opposite the spine is the trachea (T). Note the remarkable lateral dilation (arrows) in this picture obtained with with no insufflated air using a 3.6mm ENF-VQ scope. It is the patient’s own air keeping the esophagus open for viewing.
air from below further dilates the upper esophagus

(2 of 3)

At a moment when air from below further dilates the upper esophagus, the tracheal outline is particularly well-seen (T) opposite the spine (S). The “width” of the trachea indicated further emphasizes the degree of lateral dilation, which is necessary because spine and trachea resist anteroposterior dilation.
aortic shelf at the mid-esophagus

(3 of 3)

Just for interest, at mid-esophagus, the familiar aortic “shelf” is seen. Again, this esophagus is being viewed with a 3.6 mm scope with only the patient own (un-burped) air allowing this view.

What the Esophagus Can Look Like “Below A Burp”: Series of 3 photos

Visual Portfolio, Posts & Image Gallery for WordPress
Mid-esophagus of a person with R-CPD

Baseline (1 of 3)

Mid-esophagus of a person with R-CPD who is now burping well after Botox injection into the cricopharyngeus muscle many months earlier. The esophagus remains somewhat open likely due to esophageal stretching from the years of being unable to burp and also a “coming burp.”
esophagus dilates abruptly

Pre-burp (2 of 3)

A split-second before a successful burp the esophagus dilates abruptly from baseline (photo 1) as the excess air briefly enlarges the esophagus. An audible burp occurs at this point.
burp in the esophagus

Post-burp (3 of 3)

The burp having just happened, the esophagus collapses to partially closed as the air that was “inflating it” has been released.

Where have no-burpers traveled from?

 

R-CPD patient across the U.S.A.

World Map of RCPD Patients

Open Epidermoid Cyst

An open epidermoid cyst occurs when it spontaneously ruptures, but yet not empty all of its contents (keratin). The outline of the partially-emptied cyst may still be very evident, but it usually assumes an oval shape with the long axis oriented anteriorly and posteriorly. If the cyst empties nearly completely, the white oval is no longer seen, but the vocal cord may have a mottled appearance. If the cyst empties completely, a sulcus lined by epithelium remains.


Photos of open epidermoid cyst:






Indicator Lesions

Indicator lesions are visual findings of vibratory injury in a person who has no current voice complaints, and whose “swelling checks” are normal.

Background:

Individuals who fit the “vocal overdoer profile” may only notice vocal limitations caused by vibratory injury on an occasional and transient basis. These episodes may be brushed off as insignificant, because they are so brief, and recovery so complete. Even while asymptomatic, however, such individuals may have subtle visual findings of vibratory injury—“Indicator lesions.” Unless discovered during a screening examination for entry to music studies, the individual may be unaware of these findings. What if indicator lesions are found? Suggested responses:

1. Make sure the individual understands that these are indicator lesions and as such constitute a “yellow flag” suggesting at least occasional overuse of voice.

2. Define the “vocal overdoer syndrome” for the person as the combination of and interaction between an expressive, talkative, extroverted personality and a “vocally busy” life. Said another way, there may be both intrinsic, personality-based and extrinsic, vocal commitment based reasons that amount and forcefulness of voice may be excessive. A 7-point talkativeness scale can be used to estimate the intrinsic risk, where “1” represents Clint Eastwood, “4” the averagely talkative person, and “7” the life of the party. The extrinsic risk is addressed by making a list of vocal commitments such as for occupation, childcare, hobbies, social activities, religious practice, athletics/ sports, and rehearsal and performance.

3. Discuss the symptom complex of mucosal injury:

a) Loss/ impairment of high, pianissimo singing;

b) Day-to-day variability of vocal clarity and capability;

c) A sense of increased effort to produce voice;

d) Reduced mucosal endurance, or becoming “tired” vocally from amount/ manner of voice use that does not seem to induce this in others;

e) Phonatory onset delays—the slight hiss of air that precedes the beginning of the sound, especially if high and soft. Speaking voice hoarseness can be a fairly late and gross symptom of mucosal injury.

4. Talk about managing the amount, manner, and spacing of voice use to reduce unnecessary wear and tear on the vocal cord mucosa.

5. Teach vocal cord swelling checks as a means of detecting even subtle injury. Respond to what they tell you!

Singers are understandably distressed when they discover even the tiniest mucosal swelling such as indicator lesions. That is because for true singers, singing is not just what they do; the term “singer” also defines who they are. So injury threatens both activity and identity. Consequently, discuss indicator lesions with great care and sensitivity. Keep in mind that some doctors speak of “small vocal nodules that do not interfere with singing.”

Small nodules that are but a tiny step above indicator lesions, especially when spicule-shaped rather than fusiform, always exact a penalty to the singing voice (see #3 above), but limitations can often be concealed by warming up, and singing more loudly. Singers often say “I have a big voice that doesn’t do pianissimo.” That is, pp becomes p; mp becomes p; mf becomes f; and so forth. Alternatively, the singer considers the missing pianissimo to be a technical fault.


Indicator Lesions and MTD

Visual Portfolio, Posts & Image Gallery for WordPress

Breathy voice (1 of 6)

Distant view at the prephonatory instant in young female singer. There is a wide gap between the cords. The explanation for this gap is not immediately evident, but the voice is breathy.

Phonation (2 of 6)

Phonation has started with margin blurring, and the sense of extra space between the cords remains.

Open phase (3 of 6)

Strobe light, open phase of vibration at B4 (494 Hz)

Closed phase (4 of 6)

Closed phase of vibration, still at B4. Note the incomplete closure posteriorly caused by MTD. Arrows indicate the vocal processes.

Open phase, indicator lesions (5 of 6)

Open phase of vibration, strobe light, at F#5 (740 Hz). Here, the subtle indicator lesions are seen more clearly; vocal cord margins are not perfectly straight.

"Closed" phase, MTD (6 of 6)

“Closed” phase of vibration is not really closed and the vocal processes do not come into full closure, again consistent with MTD.

Indicator Lesions

Visual Portfolio, Posts & Image Gallery for WordPress

Middle-aged teacher (1 of 4)

Middle-aged teacher who also sings. She is aware of effortfulness to sing; this is hard to interpret because she is pre-menopausal and also not actively singing/ grooming her voice. Extraordinarily subtle margin swellings could easily be overlooked in this view.

Phonatory view (2 of 4)

During phonation at E-flat 4 (311 Hz) with vibratory blurring under standard light. The subtle narrowing of the blurred dark line between the folds could still be overlooked.

Pre-phonatory instant (3 of 4)

Use of the pre-phonatory instant by having the patient do repeated staccato at the same pitch. Here, very small, low-profile, and broad-based swellings can be seen.

Indicator swellings (4 of 4)

At much higher pitch, E5 (659 Hz) and using strobe light. In this view of the open phase of vibration, at high magnification, the rounded “indicator swellings” are seen best.

Recurrent Respiratory Papillomatosis (RRP) and Other HPV-Induced Lesions

A disorder in which wart-like tumors or other lesions grow recurrently within a person’s airway. These growths are caused by the human papillomavirus (HPV), and they may occur anywhere in a person’s airway, such as on the vocal cords (by far the most common site), in the supraglottic larynx, or in the trachea. If these growths are removed, they will almost always grow back, or recur; hence, “recurrent respiratory papillomatosis.”

Symptoms and risks of recurrent respiratory papillomatosis:

RRP can be life-threatening in young children, if not carefully followed and treated, since a child’s airway is relatively narrow and can potentially be obstructed completely by the disease’s proliferative growths; moreover, RRP in children tends to grow and recur more aggressively. In adults, RRP will usually only impair voice function (when the growths occur on the vocal cords), though it can also impair breathing in severe cases. Occasionally, RRP can also progress to cancer, and therefore patients found to be at high risk for this (see below) need to be monitored carefully.

Characteristics of the growths:

The growths usually associated with RRP are wart-like tumors, or papillomas, that protrude conspicuously from the surface on which they grow, often in grape-like clusters. These kinds of papillomas are usually seen in patients who have HPV subtypes 6 or 11, which are both lower-risk subtypes for incurring cancer. There are some HPV patients, however, who manifest their HPV infection with subtler, velvety growths within the airway—“carpet-variant” growths, so to speak. Although these “carpet-variant” growths do not have the wart-like appearance of the papillomas typically associated with RRP, there at least a few key points of similarity:

  1. Both the “carpet-variant” and wart-like growths are lesions that sometimes appear, either independently or together, in patients who have HPV;
  2. Both the “carpet-variant” and wart-like growths are stippled with polka-dot vascular markings, because each “loop” in the “carpet” or each “grape” in the wart-like cluster has its own fibrovascular core, seen as a red dot;
  3. Both the “carpet-variant” and wart-like growths can disrupt voice function;
  4. Both the “carpet-variant” and wart-like growths usually recur if they are removed.

Because of these similarities, we consider these “carpet-variant” growths, even when the sole expression of the infection, to be at least a cousin to RRP, within the family of HPV-induced lesions. Many patients with this “carpet-variant” condition have HPV subtypes such as 16 or 18 that are higher-risk for cancer; such patients need to be monitored with particular care.

Treatment for recurrent respiratory papillomatosis:

The primary treatment for RRP and other HPV-induced lesions is careful, conservative surgical removal of the growths. Because these growths almost always recur, surgery must usually be performed on a repeated basis, as frequently as every few weeks in children, but on average much less often in adults. A common interval between surgeries for adult patients is between every six months and every two years, depending on how quickly the RRP or other HPV-related lesion recurs and impairs the patient’s voice function again. There are also a few medical treatments that have been used in addition to surgery, including, among others, interferon, indole-3-carbinol, intralesional mumps or MMR (measles-mumps-rubella) vaccine, cidofovir, and bevacizumab.


Photos:



























Videos:

Papillomas of the Larynx and Trachea
This video shows wart-like growths in the voicebox and windpipe (larynx and trachea) caused by chronic infection with the human papillomavirus (HPV).
Pulsed-KTP Laser Coagulation of Vocal Cord Papillomas
See a video demonstration of laser coagulation of vocal cord papillomas.
Recurrent Respiratory Papillomatosis (RRP) | What Is It?
In this video, Dr. Robert Bastian discusses chronic human papilloma virus (HPV) infection of the larynx (especially vocal cords), causing hoarseness.

Laryngocele

A disorder in which the laryngeal saccule is inflated and becomes abnormally enlarged. A common symptom of a laryngocele is hoarseness.

How it develops:

The laryngeal saccule, or laryngeal appendix, is a very small blind sac—a dead-end corridor, so to speak—which is located just above the vocal cords, one on each side, and is lined with glands that supply lubrication to the cords. When a person makes voice, it is possible for a little bit of the air being pushed up out of the trachea to slip into this saccule. If over time enough air enters the saccule with enough force, the saccule may begin to be inflated and stretched out, leading to a laryngocele.

In some cases, the air that slips into and inflates the laryngocele will slip back out again as soon as the person stops making voice, so that the laryngocele abruptly inflates and deflates with each start and stop of speech or voice-making. (The photos and video below are an example of this.) In other cases, the air cannot exit as easily, but it may be reabsorbed slowly during quiet times or during sleep—only to be inflated again at the next instance of more active speaking.

Laryngocele vs. saccular cyst:

A much more common disorder of the laryngeal saccule (compared with a laryngocele) is a saccular cyst, which can occur if the entrance to the laryngeal saccule becomes blocked. In this scenario, air is absorbed, but secretions build up and gradually expand the saccule.

Symptoms and treatment for laryngocele:

A common symptom is hoarseness, because while the saccule is inflated, it may press press down on the vocal cords, not allowing them to vibrate freely, or it may block the laryngeal vestibule just above the cords and partially muffle the sound produced by the cords. Standard treatment is surgical removal, through one of two approaches: a small incision on the neck that leads into the larynx from the outside, or a laryngoscope that is inserted through the mouth and down into the larynx so that the laryngocele can be removed using a laser.


Photos:

Laryngocele

Visual Portfolio, Posts & Image Gallery for WordPress

Laryngocele (1 of 5)

Before phonation begins: the laryngocele is not visible.

Saccule (2 of 5)

Phonation begins: the saccule suddenly begins to inflate.

Saccule blocks airway (3 of 5)

The saccule is at peak inflation. Note how this obstructs the laryngeal airway.

Phonation ending (4 of 5)

The saccule is deflating. Note the motion blur; inflation and deflation each happens in a fraction of a second.

Phonation ended (5 of 5)

The laryngocele is again fully deflated and hidden from view.

Bilateral Laryngocele, Before and After Removal

Visual Portfolio, Posts & Image Gallery for WordPress

Bilateral laryngocele (1 of 8)

Vocal cords approaching point of best closure possible (due to left cord paresis). Faint dotted lines outline the approximate boundary of each laryngeal saccule, which not yet inflated.

Bilateral laryngocele (2 of 8)

As air just begins coming upward between the cords, one can see subtle inflation (dotted lines), particularly of the right saccule (left of image).

Bilateral laryngocele (3 of 8)

As phonation continues, inflation of the (now diagnosable) laryngocele becomes obvious, and the left laryngocele (right of image) is now more obviously inflated than before, again indicated by the dotted lines.

Bilateral laryngocele (4 of 8)

Near the end of a sustained period of voicing, maximum inflation of the laryngoceles is seen (dotted lines). On the right side (left of image), the stretching mucosa is so thinned as to appear translucent.

Bilateral laryngocele, after removal (5 of 8)

Same patient, breathing position, 12 weeks after complete removal of the bilateral laryngoceles via false cord incisions (lines of incision shown by dotted lines). This patient also has long-standing paralysis of the right vocal cord (left of image) and limited mobility of the left cord, so the cords don’t open fully for breathing.

Bilateral laryngocele, after removal (6 of 8)

Phonatory position. Note the lack of inflation of the now-absent laryngoceles, and compare that with photos 3 and 4 of this series.

Bilateral laryngocele, after removal (7 of 8)

Closer view of the posterior ends of the true vocal cords during maximal abduction for breathing. Space between the vocal cords is an estimated 50% of normal, because of the paralyzed right cord and the limited mobility of the left cord.

Bilateral laryngocele, after removal (8 of 8)

Same close-up view, but during phonation. The left vocal cord (right of image) has shifted slightly toward the midline, but the cords do not actually close and, thus, the patient cannot produce glottic (true vocal cord) voice. An implant could help to close this gap, but the patient will first try developing a “false cord voice.”

Laryngocele, Seen in a CT Image

Visual Portfolio, Posts & Image Gallery for WordPress

Laryngocele, seen in a CT image (1 of 1)

The patient’s left-sided saccule is dilated and filled by air, forming a laryngocele (the largest black spot in the image). The right-sided saccule is not seen because it is of normal size. The two smaller black spots show air in the pyriform sinuses (a normal finding).

Videos:

Laryngocele: A Cause of Hoarseness
A laryngocele is a disorder of the saccule, or laryngeal appendix, in which air abnormally expands it. Watch this video to see how a laryngocele behaves in real-time, and why that can affect the voice.

Cryptococcus Neoformans

Cryptococcus neoformans laryngitis is a rare fungal infection of the larynx. The infection usually occurs as a primary pulmonary infection but can spread to other regions of the body. Common characteristics of cryptococcus neoformans include longstanding hoarseness, sore throat, or edema of the vocal cords. Cryptococcus neoformans laryngitis is treated with oral anti-fungal medications such as fluconazole.


Photos of cryptococcus neoformans:

Cryptococcus infection of the larynx: Series of 4 photos

Visual Portfolio, Posts & Image Gallery for WordPress
laryngeal vestibule

Panoramic view (1 of 4)

Panoramic view of laryngeal vestibule in a man with very longstanding hoarseness and sore throat. Note intense redness and bumpy mucosal surface. Biopsy revealed Cryptococcus neoformans.
rough surfaced vocal cords

Closer view (2 of 4)

Closer view of the vocal cords shows similar intense inflammation and rough surface.
smooth mucosal surface

One year later (3 of 4)

After a one-year course of fluconazole, an oral anti-fungal medication. Symptoms are gone. The larynx is no longer inflamed, and the mucosal surface is smooth. White area of scarring (dotted surround), and scar band (parallel dotted lines).
healthy vocal cords

One year later, close-up (4 of 4)

Close-up of the vocal cords shows similar resolution of redness and cobblestoned surface.

SLAD-R

SLAD-R (Selective laryngeal adductor denervation-reinnervation). This procedure was introduced by Dr. Gerald Berke of UCLA in the late 1990’s. It is a surgical option for adductory spasmodic dysphonia. The concept is to sever the anterior branch of the recurrent laryngeal nerve. This denervates the spasming laryngeal adductors (particularly thyroarytenoid and lateral cricoarytenoid muscles). The squeezed, strained quality and/ or “catching, cutting out, stopping” of the voice are replaced initially with an extremely breathy and weak voice. This initially weak voice is analogous to what one might sound like after a Botox injection that is far too high a dose. To return strength to the voice, a branch of the ansa cervicalis nerve that normally supplies some relatively “unimportant” neck muscles is anastomosed (connected) to the severed nerve. It takes 3 months to a year for tone to begin to return to the adductory muscles. Since the “unimportant” neck muscles were not affected by the dystonia, the hope is that the new nerve supply to the laryngeal muscles may not be affected by dystonia.


Photos:



Videos:

One Man’s Experience Over Time with SLAD-R
SLAD-R is a surgical alternative to ongoing “botox” injections for treatment of adductory spasmodic dysphonia. The surgery involves intentionally cutting the nerves that close the vocal cords for voice and reconnecting a different nearby nerve supply (reinnervating the nerves). This surgery requires the patient’s willingness to endure an extremely breathy voice for many months after the procedure, while awaiting reinnervation.

Pharyngeal Paralysis

The pharynx (loosely “throat”) has a “foodway” function to convey food and liquid from the mouth to the esophagus. It also serves as part of the “airway,” also from mouth into the larynx and trachea. These foodway/airway functions are kept separate so food and liquid do not enter the airway towards the lungs. At the moment of swallowing, vocal cords clamp firmly together and epiglottis drops over the entrance of the larynx to divert food and liquid into the esophagus. During each swallow, lasting perhaps a second, breathing is briefly suspended. Once the food/liquid has gone by, the larynx re-opens and breathing resumes.

A thin sheet of muscle surrounds the pharynx, and squeezes to narrow the pharynx and help to propel swallowed material. That contraction lasts for approximately one second, each time the person swallows. The muscle is innervated bilaterally by the pharyngeal branch of the vagus nerve and so one side or both sides can be paralyzed by tumor, fracture at the base of the skull, viral injury, etc.

This diagnosis is often overlooked, because clinicians may not be clear on how to make the diagnosis. The best way is to obtain a clear panoramic view of the laryngopharynx as seen in the photo series below, and ask the patient to produce a very high pitch. This maneuver “recruits” contraction of the pharynx outside of the act of swallowing and allows the examiner to see clearly the difference in the contraction of the two sides. The paralyzed side is pulled to the non-paralyzed side, again as seen below.

Some with unilateral pharynx paralysis can compensate and continue to swallow (with limitations). Others are completely unable to surmount the impediment of this kind of paralysis.




Croup

Also known as laryngotracheitis or laryngotracheobronchitis, croup1 is a primarily pediatric viral disease affecting the larynx and trachea. Though it may resemble a simple cold at first, the infection causes a loud barking cough and stridor (unusual, high-pitched breathing noises indicating partial airway obstruction). The majority of cases are caused by parainfluenza viruses (types 1, 2, and 3) but a variety of other viruses can lead to croup symptoms.

The central problem for patients with croup is the swelling of the subglottic region of the larynx, which is the narrowest part of the airway in children. It can vary in its severity and can last anywhere from three days to two weeks. Most patients do not require hospitalization, as home treatment or prescribed antibiotics or steroids are typically sufficient.


Croup, aka Laryngotracheitis:

Visual Portfolio, Posts & Image Gallery for WordPress
Croup

Croup, aka laryngotracheitis (1 of 4)

Though croup is most often seen in children, this woman developed a barking cough and mild, non-anxiety provoking stridor in the context of an upper respiratory infection. In this panoramic view note in particular the prominence and redness of the conus part of the vocal cords (indicated by white lines).
laryngotracheitis

Croup, aka laryngotracheitis (2 of 4)

Closer view. Dotted lines signify normal airway diameter.
redness and narrowing of the posterior subglottic airway

Croup, aka laryngotracheitis (3 of 4)

Even closer view showing redness and narrowing of the posterior subglottic airway.
Croup

Croup, aka laryngotracheitis (4 of 4)

View within the posterior subglottic narrowing.

  1. Meyer, Anna. “197. Pediatric Infectious Disease” Cummings Otolaryngology Head and Neck Surgery. Ed. Paul Flint. 6th ed. Vol. 3. Philadelphia, PA: Elsevier, 2015. 3045-3054. 

Chondroma

Chondroma is a benign growth composed of cartilage cells.


Chondroma of thyroid cartilage

Visual Portfolio, Posts & Image Gallery for WordPress
CT scan of the larynx, showing the thyroid cartilage

CT scan of the larynx (1 of 4)

CT scan of the larynx, showing the thyroid cartilage (outlined by gray dotted lines) and an abnormality deforming the thyroid cartilage on one side (between the white arrows). Note how the thyroid cartilage bulges on that side, as compared with the opposite side, and the black speck which indicates varying densities in the cartilage.
Chondroma of thyroid cartilage

Endoscopic View of the Larynx (2 of 4)

Same patient, endoscopic view of the larynx, again showing the abnormality (at arrows). Here the abnormality looks similar to a saccular cyst, but the scan (and subsequent biopsy) shows that it is cartilaginous and a chondroma, not chondrosarcoma.
Closer view of the chondroma

Chondroma of thyroid cartilage (3 of 4)

Closer view of the chondroma, showing an almost bi-lobed appearance.
Chondroma of thyroid cartilage

Left Vocal Cord Sits Lower Then the Right (4 of 4)

Under strobe lighting, which shows that the left vocal cord (right of photo) is apparently at a lower level than the opposite cord.